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Abstract
An earlier paper (Zatsarinny O and Froese Fischer C 2002 J. Phys. B: At.
Mol. Opt. Phys. 35 4669) presented oscillator strengths for transitions from the
2p2 3P term to high-lying excited states of carbon. The emphasis was on the
accurate prediction of energy levels relative to the ionization limit and allowed
transition data from the ground state. The present paper reports some refined
transition probability calculations for transitions from 2p2 3P, 1D, and 1S to all
odd levels up to 2p3d 3Po. Particular attention is given to intercombination
lines where relativistic effects are most important.

1. Introduction

It has recently been observed [1] that the experimental transitions probabilities [2, 3] for
lines in the 2p2 3P–2p3d 3Fo multiplet in neutral carbon have ratios that differ widely from
theoretical results reported earlier using a non-orthogonal B-spline frozen-cores R-matrix
method [4]. The emphasis of the latter was on the accurate prediction of energy levels relative
to the ionization limit for highly excited states and transition data for allowed transitions from
2p2 3P. Important for such a calculation were correlation and the relativistic shift, particularly
for the interacting 2pnd and 2pns Rydberg series. Not as important was the mixing of different
LS terms in the LSJ Breit–Pauli approximation. In fact, the calculation [4] included only the
spin–orbit operator in addition to the relativistic shift corrections. But there is no spin–orbit
interaction between the configuration states 2p4s 3Po

2 and 2p3d 3Fo
2, only spin–spin and spin–

other-orbit and these might be important since the observed levels are only 50.98 cm−1 apart1.
Interactions of the outer electrons with the 1s2 core were neglected.

Previous multiconfiguration Hartree–Fock (MCHF) calculations [6] for carbon did not
include the 2p3d levels. In the present paper, these calculations have been repeated with

1 The customary unit cm−1 used here is related to the SI units of energy (joules) by 1 cm−1 = 1.986 445 61(34)×
10−21 J [5].
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somewhat larger wavefunction expansions and extended to include these levels. The new
results are compared with the non-orthogonal B-spline R-matrix (BSR) results, previous
MCHF data [6] and critically evaluated values [7]. The branching ratios for the 2p2 3P–2p3d
3Fo multiplet are in better agreement with experiment.

2. Computational details

The theory and method are essentially the same as was described in previous work [6] except
that expansions were over a larger set of configuration states and more levels were included,
namely the levels of 2p3d and 2p4s. The same number of orbitals were used.

Wavefunction expansions were over sets of configuration state functions (CSF) from
configurations {1}{1, 2}2{2, 3, 4}{2, 3, ..6}2 and {1}2{2}{2, 3, 4}{2, 3, ..8}2, where the notation
{2, 3, ..8}2, for example, indicates the set of all possible two-electron combinations over the
indicated orbitals without regard to the orbital angular quantum number. From this set, those
CSFs were selected that interacted with one or more members of the multi-reference set
1s2{2}3{2, 3, 4}, namely the set of CSFs with a closed 1s2 core, three n = 2 electrons, and
one nl electron with n = 2, 3 or 4. In the wavefunction expansions, orbital quantum numbers
were restricted to l = 4 (g-electrons) whereas in the multi-reference set, the maximum was
l = 2 (d-electrons).

Allowing for excitations from the 1s-subshell greatly increases the size of wavefunction
expansions. After reducing LS expansions by eliminating all CSFs with a coefficient less than
0.000 01, the 3Po expansion included 20 222 CSFs. The correction to the wavefunction that
results from an exciting one 1s electron and another outer electron of a CSF in the reference
set accounts for the polarization of the core and is referred to as core-valence correlation.

The orbital optimization for the even 2p2 3P, 1D and 1S0 terms was straightforward. A
simultaneous optimization scheme was used for the lowest eigenstate of each LS term. The
odd terms were divided into two groups for optimization. Group 1 included the more compact
2s2p3 3Do, 3Po and 5So terms, along with 2p3s 1,3Po. The radial functions of orbitals were
optimized for these five terms, with 1s,2s,2p kept fixed after n = 4. The second group included
the terms of 2p3d ( 1,3Po, 1,3Do and 1,3Fo) and 2p4s (1,3Po). The odd 2p3d 1,3Do and 1,3Po

terms are not the lowest terms of their symmetry. By far the most difficult calculation is the
one for the 3P spectrum. The 2p3d 3Po is the fourth eigenstate of the 3Po manifold and interacts
with 2p3d 3F for J = 2 primarily through a spin–orbit interaction. Thus it is important to get
an accurate energy separation of these levels. The 2p4s 3Po is the third eigenstate and needs
to be orthogonal to 2p3s 3Po the lowest eigenstate. At the same time, it was found that the
eigenstates were only in their proper order if 2s2p3 3Po (the second eigenstate) was included
in the optimization. For this reason, orbitals with n � 6 were obtained by optimizing only
on the four lowest 3Po eigenstates. The optimization of the n = 7, 8 orbitals included the
eigenstates of 2s2p3, 2p4s, 2p3d 3Po, 2p3d 3Do and 2p3d 3Fo with the 3Po eigenstates each
having a weight of unity, 3Do a weight of two and 3Fo a weight of five.

The above process results in three sets of orbitals, orthogonal within the set but non-
orthogonal between sets. Each orbital set was then used in a Breit–Pauli configuration
interaction calculation that included all the odd or even terms to determine the wavefunction
expansion for the levels of the LS terms associated with the group. In theory, the wavefunctions
for all the odd levels could have been obtained from one orbital set, but the energy levels of
the first odd group were in slightly better agreement with observed when optimized separately.

Table 1 shows the observed energy levels and the differences between observation and
theory. Because the fine-structure splitting is small, the differences are similar for all levels of
a term. Consequently, only the difference for one level is reported. For the 2p2 3P2 level, the
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Table 1. Comparison of energy levels (in cm−1). Tabulated are the ASD [7] energies and
the differences, E(theory)−E(ASD), for BSR [4], the MCHF+BP results without core-valence
correlation (previous [6]) and present with core-valence correlation.

Difference (theory−observations)

Configuration Level Energy BSR Previous Present

2p2 3P2 43 5.54 −0.37 0.15
1D2 10 193 76 123
1S0 21 648 171 196

2s2p3 5So
2 33 735 123 −5 9

2p3s 3Po
2 60 738 151 345 22

1Po
1 61 982 173 432 36

2s2p3 3Do
3 65 386 1299 254 210

3Po
2 75 255 1245 816 226

2p3d 1Do
2 77 680 50 105

2p4s 3Po
2 78 148 53 65

2p3d 3Fo
3 78 216 36 77

3Do
3 78 318 59 73

2p4s 1Po
1 78 340 52 75

2p3d 1Fo
3 78 530 26 72

1P1 78 731 44 75
3Po

2 79 311 513 137

Table 2. Comparison of observed and theoretical level separation. The ratio of the theoretical
difference relative to observed is given in parentheses.

Energy

Line ASD BSR MCHF

2p4s 1Po
1–2p3d 3Do

1 46.79 39.07(0.84) 49.04(1.05)
2p3d 3Fo

2–2p4s 3Po
2 50.98 33.36(0.65) 62.44(1.22)

2p3d 3Do
2–2p3d 3Fo

2 108.56 132.78(1.22) 104.45(0.96)
2p3d 3Do

3–2p3d 3Fo
3 102.75 125.75(1.22) 98.81(0.99)

difference has been improved significantly by including two-body operators in the Breit–Pauli
calculation (included in the last two columns). The earlier MCHF calculations had expansions
over the set of configuration states {1}{1, 2}2{2, 3}{2, 3, . . . , 6}2 and {1}2{2}{2, 3}{2, 3, . . . 8}2.
This model assumes that components of the wavefunction containing 4l orbitals are small
corrections. The present model allows for the possibility that CSFs containing 4l orbitals
may be important components of the wavefunction, either from near-degeneracy effects or
through the use of a common orbital basis. The resulting larger expansion accounts for the
improvement in the present results over earlier MCHF calculations. The ground state total
energy was lowered by 0.003 24 au, and if the total energies of higher levels are lowered by a
lesser or greater amount, the levels shift in the spectrum where energies are relative to the total
energy of the ground state. No improvement is observed in the 2p2 1D2 and 1S0 energy levels,
but most entries of the first odd group of levels have improved appreciably. The importance
of the 4s,4p,4d orbitals is seen in the expansion for 2s2p3 3Po

2, namely

0.75 2s2p3 +0.36 2p3d +0.28 2s2p2(3P)3p +0.28 2p4s
−0.18 2p4d −0.16 2s2p2(3P)4p +0.12 2s2p2(1D)3p −0.12 2p3s
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Table 3. Wavelength λ (in vacuum), line strength S, oscillator strength f and transition probability
Aki (in s−1) for electric dipole (E1) transitions between all computed levels and forbidden (E2 and
M1) transitions between the even levels. All transition probabilities are computed using the ab
initio transition energies. The notation x.xxe ± n represents x.xx×10±n.

Multiplet
terms gi gk Type λ (Å) S fik Aki (s−1)

2s2 2p2–2s2 2p2

3P 3P 1 5 E2 2 296 170 5.000e+00 6.934e−17 1.754e−14
3 5 E2 3 700 145 1.125e+01 1.243e−17 3.633e−15
1 3 M1 6 051 508 2.000e+00 1.336e−09 8.114e−08
3 5 M1 3 700 145 2.500e+00 9.107e−10 2.662e−07

3P1D 1 5 E2 9694 2.386e−05 4.397e−15 6.242e−08
3 5 E2 9710 6.072e−05 3.712e−15 1.576e−07
5 5 E2 9735 4.450e−04 1.620e−14 1.140e−06
3 5 M1 9710 1.280e−05 1.777e−12 7.544e−05
5 5 M1 9735 3.841e−05 3.190e−12 2.245e−04

3P1S 5 1 E2 4587 4.080e−05 1.419e−14 2.250e−05
3 1 M1 4581 8.489e−06 2.498e−12 2.381e−03

2s2 2p2–2s2p3

3P 5So 3 5 E1 2965 5.535e−07 1.890e−08 8.605e+00
5 5 E1 2967 1.352e−06 2.768e−08 2.097e+01

2s2 2p2–2s2 2p(2P) 3s
3P 3Po 1 3 E1 1656 7.805e−01 1.431e−01 1.160e+08

3 1 E1 1657 7.795e−01 4.762e−02 3.470e+08
3 3 E1 1657 5.839e−01 3.569e−02 8.672e+07
3 5 E1 1656 9.779e−01 5.980e−02 8.731e+07
5 3 E1 1658 9.746e−01 3.572e−02 1.445e+08
5 5 E1 1656 2.925e+00 1.073e−01 2.608e+08

3P 1Po 1 3 E1 1612 2.263e−04 4.263e−05 3.645e+04
3 3 E1 1613 1.744e−04 1.095e−05 2.808e+04
5 3 E1 1614 1.847e−04 6.955e−06 2.969e+04

2s2 2p2–2s2p3

3P 3D 1 3 E1 1555 3.680e−01 7.187e−02 6.607e+07
3 3 E1 1556 2.755e−01 1.793e−02 4.943e+07
3 5 E1 1556 8.277e−01 5.387e−02 8.910e+07
5 3 E1 1556 1.831e−02 7.149e−04 3.281e+06
5 5 E1 1556 2.751e−01 1.074e−02 2.958e+07
5 7 E1 1556 1.544e+00 6.026e−02 1.185e+08

3P 3Po 1 3 E1 1325 2.538e−01 5.818e−02 7.370e+07
3 1 E1 1325 2.568e−01 1.962e−02 2.236e+08
3 3 E1 1325 1.931e−01 1.476e−02 5.605e+07
3 5 E1 1325 3.122e−01 2.386e−02 5.437e+07
5 3 E1 1326 3.199e−01 1.466e−02 9.276e+07
5 5 E1 1326 9.536e−01 4.370e−02 1.659e+08
5 5 E1 1286 3.506e−04 1.656e−05 6.676e+04

2s2 2p2–2s2 2p(2P) 4s
3P 3Po 1 3 E1 1279 1.102e−01 2.617e−02 3.556e+07

3 1 E1 1280 9.142e−02 7.234e−03 8.842e+07
3 3 E1 1279 5.826e−02 4.611e−03 1.879e+07
3 5 E1 1279 1.774e−01 1.404e−02 3.437e+07
5 3 E1 1280 1.126e−01 5.347e−03 3.629e+07
5 5 E1 1279 3.304e−01 1.569e−02 6.395e+07
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Table 3. (Continued.)
Multiplet
terms gi gk Type λ (Å) S fik Aki (s−1)

3P 1Po 1 3 E1 1275 1.552e−02 3.696e−03 5.054e+06
3 3 E1 1276 2.890e−02 2.294e−03 9.405e+06
5 3 E1 1276 5.593e−03 2.663e−04 1.818e+06

2s2 2p2–2s2 2p(2P) 3d
3P 1Do 3 5 E1 1286 7.836e−04 6.170e−05 1.494e+05
3P 3Fo 3 5 E1 1278 2.082e−02 1.650e−03 4.044e+06

5 5 E1 1278 1.160e−02 5.511e−04 2.250e+06
5 7 E1 1278 8.196e−02 3.896e−03 1.137e+07

3P 3Do 1 3 E1 1276 3.879e−01 9.233e−02 1.261e+08
3 3 E1 1276 2.852e−01 2.263e−02 9.265e+07
3 5 E1 1276 8.729e−01 6.926e−02 1.702e+08
5 3 E1 1277 1.835e−02 8.730e−04 5.953e+06
5 5 E1 1277 3.243e−01 1.543e−02 6.317e+07
5 7 E1 1277 1.639e+00 7.799e−02 2.281e+08

3P 1Fo 5 7 E1 1273 8.603e−03 4.106e−04 1.207e+06
3P 1Po 1 3 E1 1269 1.376e−03 3.293e−04 4.547e+05

3 3 E1 1269 6.502e−04 5.187e−05 2.148e+05
5 3 E1 1270 1.283e−05 6.140e−07 4.235e+03

3P 3Po 1 3 E1 1259 1.691e−01 4.080e−02 5.728e+07
3 1 E1 1259 1.793e−01 1.443e−02 1.822e+08
3 3 E1 1259 1.388e−01 1.116e−02 4.699e+07
3 5 E1 1259 1.979e−01 1.591e−02 4.018e+07
5 3 E1 1259 2.232e−01 1.077e−02 7.550e+07
5 5 E1 1259 6.652e−01 3.209e−02 1.350e+08

2s2 2p2–2s2p3

1D 5So 5 5 E1 4268 4.813e−11 6.851e−13 2.508e−04
2s2 2p2–2s2 2p(2P) 3s
1D 3P 5 3 E1 1998 9.654e−04 2.936e−05 8.179e+04

5 5 E1 1996 1.503e−05 4.575e−07 7.659e+02
1D 1Po 5 3 E1 1934 3.616e+00 1.136e−01 3.375e+08
2s2 2p2–2s2p3

1D 3D 5 3 E1 1852 3.766e−07 1.235e−08 4.002e+01
5 5 E1 1852 5.862e−07 1.923e−08 3.737e+01
5 7 E1 1852 6.600e−06 2.164e−07 3.005e+02

1D 3Po 5 3 E1 1535 8.587e−08 3.400e−09 1.605e+01
5 5 E1 1535 7.148e−06 2.830e−07 8.016e+02

2s2 2p2–2s2 2p(2P) 4s
1D 3Po 5 3 E1 1473 3.680e−03 1.517e−04 7.770e+05

5 5 E1 1473 1.772e−04 7.309e−06 2.248e+04
1D 1Po 5 3 E1 1468 2.569e−01 1.063e−02 5.479e+07
2s2 2p2–2s2 2p(2P) 3d
1D 1Do 5 5 E1 1482 2.770e−01 1.135e−02 3.447e+07
1D 3Fo 5 5 E1 1471 4.216e−04 1.741e−05 5.362e+04

5 7 E1 1471 1.552e−02 6.408e−04 1.411e+06
1D 3Do 5 3 E1 1469 1.127e−02 4.658e−04 2.398e+06

5 5 E1 1469 7.359e−05 3.043e−06 9.404e+03
5 7 E1 1469 5.347e−03 2.211e−04 4.883e+05
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Table 3. (Continued.)
Multiplet
terms gi gk Type λ (Å) S fik Aki (s−1)

2s2 2p2–2s2 2p(2P) 3d
1D 1Fo 5 7 E1 1464 1.935e+00 8.028e−02 1.784e+08
1D 1Po 5 3 E1 1460 2.507e−01 1.043e−02 5.439e+07
1D 3Po 5 3 E1 1446 2.654e−06 1.115e−07 5.925e+02

5 5 E1 1447 3.086e−05 1.296e−06 4.132e+03
2s2 2p2–2s2 2p(2P) 3s
1S 3Po 1 3 E1 2595 1.481e−04 1.733e−05 5.720e+03
1S 1Po 1 3 E1 2489 6.312e−01 7.703e−02 2.764e+07
2s2 2p2–2s2p3

1S 3D 1 3 E1 2355 1.410e−07 1.819e−08 7.289e+00
2s2 2p2–2s2p3

1S 3Po 1 3 E1 1864 2.714e−06 4.421e−07 2.828e+02
2s2 2p2–2s2 2p(2P) 4s
1S 3Po 1 3 E1 1775 8.801e−05 1.506e−05 1.063e+04
2s2 2p2–2s2 2p(2P) 3d
1S 3Do 1 3 E1 1769 6.328e−03 1.087e−03 7.718e+05
2s2 2p2–2s2 2p(2P) 4s
1S 1Po 1 3 E1 1768 1.985e−02 3.412e−03 2.428e+06
2s22p2 − 2s22p(2P) 3d
1S 1Po 1 3 E1 1756 6.673e−01 1.155e−01 8.329e+07
1S 3Po 1 3 E1 1736 1.184e−04 2.072e−05 1.529e+04

All components are 3Po
2. The 2p3s and 2p4s components arise from the interactions with

nearby configuration states, but the others illustrate the flexibility needed to represent a set of
wavefunctions in a common, orthogonal orbital basis.

For the upper odd levels, BSR appears to be the more accurate except for the fact that
the differences for the present values are more constant and represent a shift of the spectrum.
The Breit–Pauli interactions between different LS terms depend critically on the separation
between levels. Table 2 shows the energy separation of levels with the same J of some closely
space levels. Also tabulated are the BSR and present MCHF separations with the ratio of
separations (theory/observed) in parentheses. In all cases, the present energies have better
separation and ratios closer to unity. Thus, in those cases where the mixing of LS terms in
the wavefunction composition is important, the present results can be expected to be more
accurate. Examples are spin-changing transitions and the 2p2 3P–2p3d 3Fo transition.

3. Transition probabilities

Table 3 reports transition probability data for all electric dipole (E1) transitions between
the even and odd levels as well as the forbidden (E2 and M1) transitions within the even
levels. More complete information that includes the length and velocity values for E1 and
E2 transitions is available at the MCHF/MCDHF (Multiconfiguration Dirac–Hartree–Fock)
website [8]. All quantities were calculated using ab initio transition energies.

Table 4 compares BSR [4], previous MCHF [6] and present MCHF transition probabilities,
along with the ASD recommended values along with their accuracy ratings [7] for a number
of i transitions. The 2p2 3P–2s2p3 5So transition arises through relativistic effects that are
better described in the MCHF results. For a number of transitions, such as 2p2 3P–2p3s 3Po
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Table 4. Comparison of BSR [4] and MCHF+BP transition probabilities Aki with critically
evaluated Atomic Spectra Database (ASD) transition data and their accuracy [7] from theoretical
sources [9]. MCHF results are computed using ab initio transition energies.

Transition gi gk BSR Previous Present ASD

2p2 3P–2s2p3 5So 3 5 7.20 8.48 8.61
5 5 2.17e+1 2.06e+1 2.10e+1

2p2 3P–2p3s 3Po 1 3 1.07e+8 1.20e+8 1.16e+8 1.13e+8 A
3 1 3.20e+8 3.60e+8 3.47e+8 3.43e+8 A
3 3 8.01e+7 9.00e+7 8.67e+7 8.64e+7 A
3 5 8.05e+7 9.06e+7 8.73e+7 8.58e+7 A
5 3 1.33e+8 1.50e+8 1.44e+8 1.44e+8 A
5 5 2.41e+8 2.71e+8 2.61e+8 2.52e+8 A

2p2 3P–2p3s 1Po 1 3 3.79e+4 3.50e+4 3.64e+4 3.01e+4 C+
3 3 2.62e+4 2.60e+4 2.81e+4 2.21e+4 C+
5 3 4.40e+4 2.66e+4 2.974+4 2.64e+4 C+

2p2 3P–2s2p3 3Do 1 3 6.37e+7 7.07e+7 6.61e+7 6.57e+7 A
3 3 4.76e+7 5.30e+7 4.94e+7 4.92e+7 A
3 5 8.59e+7 9.54e+7 8.91e+7 8.86e+7 A
5 3 3.14e+6 3.52e+6 3.26e+6 3.26e+6 A
5 5 2.84e+7 3.17e+7 2.90e+7 2.94e+7 A
5 7 1.41e+8 1.22e+8 1.18e+8 1.18e+8 A

2p2 3P–2s2p3 3Po 1 3 6.00e+7 9.54e+7 7.37e+7 7.95e+7 B
3 1 1.85e+8 2.87e+8 2.24e+8 2.41e+8 B
3 3 4.63e+7 7.22e+7 5.60e+7 6.04e+7 B
3 5 4.34e+7 7.09e+7 5.44e+7 5.89e+7 B
5 3 7.57e+7 1.19e+8 9.28e+7 1.00e+8 B
5 5 1.35e+8 2.14e+8 1.66e+8 1.79e+8 B

Table 5. Comparison of BSR [4] and MCHF transition probabilities Aki (in units of 107 s−1) with
critically evaluated Atomic Spectra Database (ASD) transition data and their accuracy [7] from
theoretical sources [9]. MCHF results are computed using ab initio transition energies.

2p2 3P–2p4s 3Po 2p2 3P–2p3d 3Po

gi gk BSR Present ASD BSR Present ASD

1 3 3.57 3.56 3.11 B 7.23 5.73 5.32 B+
3 1 8.61 8.84 8.22 B 22.4 18.2 17.0 B+
3 3 1.79 1.87 1.73 B 5.75 4.70 4.42 B+
3 5 3.50 3.44 3.08 B 5.19 4.02 3.71 B+
5 3 3.54 3.63 3.33 B 9.31 7.55 7.06 B+
5 5 6.21 6.40 5.77 B 16.7 13.5 12.7 B+

and 2p2 3P–2s2p3 3Do, present results are in better agreement with the ASD compilations.
The latter are based on results obtained by Hibbert et al [9] that include semi-empirical
diagonal energy shifts by LS configuration in the interaction matrix in the determination of
the wavefunctions. For both the 3Do and 3Po terms, 2s2p3 interacts strongly with one or more
Rydberg series—2pnd in the case of the former and 2pns and 2pnd in the case of the latter.
In C I, the 2s2p3 3Do Hartree–Fock energy is below all Hartree–Fock 2pnd energies, whereas
2s2p3 3Po has an energy between the 2p3d and 2p4d and between 2p4s and 2p5s Hartree–Fock
energies. Correlation is needed to lower the 2s2p3 terms to their observed positions. The
semi-empirical corrections employed by Hibbert et al [9] appear to have done this effectively
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Table 6. Comparison of BSR [4], CIV3 [9] and present transition probabilities Aki (in s−1) with
critically evaluated ASD values [7] and their accuracy, based on experimental data [2, 3] for the
2p2 3P–2p3d 3Fo transition. BSR and present results were computed using ab initio transition
energies.

gi gk BSR CIV3 Present ASD

3 5 1.73e+6 3.15e+6 4.04e+6 1.80e+6 C
5 5 1.86e+6 1.86e+6 2.25e+6 8.10e+5 D+
5 7 6.24e+6 9.28e+6 1.13e+7 1.10e+7 C

Table 7. Comparison of FFS (Froese Fischer and Saha, 1985 [10]), CIV3 (Hibbert et al 1993 [9]),
and present forbidden E2 and M1 transition probabilities. Present results are computed using ab
initio transition energies.

Aki (E2) Aki (M1)

gi gk FFS CIV3 Present FFS CIV3 Present

2p2 3P–2p2 3P
1 5 1.61e−14 1.72e−14 1.75e−14
1 3 7.30e−8 7.96e−8 8.11e−8
3 5 3.29e−14 3.60e−15 3.63e−15 2.34e−7 2.67e−7 2.66e−7

2p2 3P–2p2 1D
1 5 1.16e−7 8.34e−8 6.24e−8
3 5 1.57e−7 8.21e−8 1.58e−7 7.45e−5 6.17e−5 7.54e−5
5 5 1.48e−6 1.05e−6 1.14e−6 2.22e−4 1.836e−4 2.24e−4

2p2 3P–2p2 1S
3 1 2.24e−3 2.11e−3 2.38e−3
5 1 1.82e−5 1.93e−5 2.24e−5

2p2 1D–2p2 1S
5 1 5.67e−1 6.38e−1 6.19e−1

in a number of cases (2p2 3P–2s2p3 3Do and 2p2 3P–2p3s 3Po, for example). In other cases,
present results agree most closely with the previous calculations.

Because of difficulties associated with perturbers, BSR results were restricted to 2pns,
n � 4 and 2pnd, n � 3. In table 5, BSR results for transitions from 2p2 3P to 2p4s 3Po and
2p3d 3Po are compared with present MCHF and ASD recommended values. There is excellent
agreement between BSR and present MCHF for transitions to the former multiplet but better
agreement between MCHF and ASD for the latter.

Of special interest in this paper are the transition probabilities for lines in the 2p2 3P–2p3d
3Fo multiplet reported in table 6. These E1 transitions arise from the mixed composition of
the 3Fo

J wavefunction. In the present work, the expansion coefficients and CSFs of the leading
components of the wavefunction are

3Fo
2 : 0.952 2p3d 3Fo + 0.198 2p33d 3Fo − 0.154 2p3d 3D

3Fo
3 : 0.939 2p3d 3Fo + 0.196 2p33d 3Fo − 0.209 2p3d 3D + 0.087 2p3d 1Fo

The initial state is largely pure 3P and so it is the 3Do component of the wavefunction
that contributes to the transition rate for this transition. Table 2 showed that the 3Fo and
3Do separation was accurately predicted in the present work which implies a good 3Do:3Fo
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composition for the wavefunction. In table 6 theoretical values are compared with some
experimental results. The CIV3 and present transition rates for the 3P2–3Fo

3 line agree well
with each other and experiment, though there is considerable variation in the 3P1,2–3Fo

2 lines.
These have the same upper state with only the initial state varying. In such cases, the ratio
A

(
3P1 − 3Fo

2

)/
A

(
3P2 − 3Fo

2

)
, should be essentially constant regardless of the magnitude of

the mixing. The theoretical ratios are 0.93, 1.7, 1.8 for BSR, CIV3 and present, respectively,
compared with 2.2 for data derived from experiment. It is not clear why the non-orthogonal
spline ratios are so different.

Finally, in table 7 we compare the forbidden E2 and M1 transition probabilities for
transitions between the levels of the 2p2 configuration. Hibbert et al [9] used an effective
spin–orbit operator selected to reproduce the 2p3s fine structure. This could limit the accuracy
of these forbidden transitions. Generally, there is good agreement with the CIV3 values
and present work, but for 2p2 3P–2p2 1D M1 transitions, there is better agreement with the
MCHF+Breit–Paul results reported in 1985 [10].

The author is grateful to Wolfgang Wiese for his interest and stimulating discussions.
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